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on Prediction of Liquefaction

Javad Sadoghi Yazdi1; Farzin Kalantary2; and Hadi Sadoghi Yazdi3

Abstract: Data imbalance causes learning bias in class identification techniques. A major cause for limited success in the prediction of liq-
uefaction potential by various pattern recognition techniques is because of a liquefaction to nonliquefaction data class imbalance. It is suggested
to use a support vector data description (SVDD) strategy to compensate the minority data. SVDD is used to generate virtual data points for the
minority class bearing the same characteristics as the nonvirtual samples. Then an adaptive neuro-fuzzy inference system (ANFIS) classifier is
employed to determine the liquefaction threshold. The ANFIS predictions are then examined by evaluating the coefficient of determination
(COD) and comparing it with the Bayesian updating method. It is shown that for the liquefied data the approach is as efficient as the Bayesian
method, but great improvement in the recognition rates of the nonliquefied data have been achieved. DOI: 10.1061/(ASCE)GM.1943-
5622.0000217. © 2013 American Society of Civil Engineers.
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Introduction

Determination of liquefaction potential of soils is of major concern
and an essential criterion in the design process of civil engineering
projects. Over the past 30 years, many researchers have endeavored
to present various methods for the prediction of liquefaction po-
tential of soils.

Among the situ tests, many researchers have adapted cone pen-
etration test (CPT) results as the basis for the evaluation of lique-
faction potential because of the superior nature of the test method
(Juang et al. 2003; Youd and Idriss 2001). Also, the estimation of
elastic constants based on CPT and standard penetration test (SPT)
data have been extended (Weiher and Davis 2004).

More intricate approaches based on constitutive modeling (Mróz
et al. 2003), artificial neural networks (ANN), fuzzy logic, and
probabilistic analyses have been introduced. Moss et al. proposed
liquefaction models that use the Bayesian updating method for CPT
data (Moss et al. 2006). The relative state parameter index, (jR), is
used for probabilistic correlation between laboratory and field liq-
uefaction potentials (Jafarian et al. 2010). Evolutionary polynomial
regression (EPR) is used for the evaluation of liquefaction potential
(Rezania et al. 2010) and later on is developed into an evolutionary-
based approach for the assessment of earthquake-induced soil liq-
uefaction and lateral displacement and presents a formulation in
three-dimensional space of cyclic stress ratio, cone penetration, and

effective overburden for the prediction of liquefaction potential
(Rezania et al. 2011). A support vector machine was developed for
use as an alternative deterministic and probabilistic empirical liq-
uefaction model (Oommen et al. 2010). However, the issue of class
imbalance is still an obstacle for all pattern recognition techniques.
It is therefore proposed to use a support vector data description to
define a class sphere and thus determine outliers in the first instance
and then use the Monte Carlo technique to randomly compensate
the minority class. A full description of the support vector data
description (SVDD) is provided by Tax and Duin (1999, 2004).

Havingmanaged the issue of class imbalance, an adaptive neuro-
fuzzy inference system (ANFIS) is then used as the identification
technique for the determination of the liquefaction threshold.
MATLAB 7.12.0.635 (R2011a) toolboxes were used for ANFIS.

ANFIS is adapted using CPT-based liquefaction case histories
compiled by Moss et al. (2006). The CPT database adapted here has
182 case histories of which 139 are from liquefied sites and 43 are
from nonliquefied sites. This database falls within the category of
imbalanced data sets because the ratio of liquefied to nonliquefied
instances is more than 3. The issue of data imbalance has been rec-
ognized and an attempt to alleviate its negative effects by using
Bayesianupdatingoptimizationhasbeenpresented. (Cetin et al. 2002).

Methodology

The basic steps in this methodology include feeding the CPT data
into the SVDD to produce various descriptions of data ranges by
applying different data region descriptions, and then for each of the
determinedminority class data spheres, the appropriate upsampling is
carried out. The ANFIS classifier is then employed to determine the
optimumdata description providing the best possible recognition rate.

The liquefaction data shown in Fig. 1(a) are fed into the SVDD
and a data region defined by model description parameters [width
of Gaussian kernel (s) and penalty coefficient (C) that is a constant,
which determines the trade-off between the hypersphere volume
and outliers] is obtained [Fig. 1(b)]. The nonliquefaction model is
similarly developed [Figs. 1(c) and (d)].

The SVDD encloses both liquefaction and nonliquefaction
regions and thereby detects outliers. Each SVDD for liquefaction
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and nonliquefaction can be used for the determination of the status
of the input sample relative to the obtained enclosed region; inside,
outside, or on-boundary is the status of the input samples. The status
is reported, respectively, with negative, positive, or zero values.

SupportVectorDataDescription-BasedDataGeneration

In view of the fact that the ratio of liquefied sample points to non-
liquefied samples is greater than 3, the imbalance between the

different data classes will have an adverse effect on the pattern
recognition procedure. Therefore, in the nonliquefied class region
identified by the SVDD, data are generated (Fig. 1).

Both Monte Carlo and the SVDD models are jointly used
to generate the data needed to remove the imbalance. A proba-
bility density function is generated using Monte Carlo for in-
itial data generation in accordance with the determined center
and the width of the minority class region. The result is shown
in Fig. 2.

Fig. 1. (a) Liquefied data; (b) surface obtained using SVDD for liquefaction data; (c) nonliquefied data; (d) obtained surface using SVDD for
nonliquefaction data

Fig. 2. (a) CPT-based case histories in CSR2 qc1 space; (b) upsample CPT data
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Classification Using Adaptive Neuro-Fuzzy
Inference System

An ANFIS classifier is then used to predict soil liquefaction.
AK-fold cross-validation method is used for training and testing of

the model. In K-fold cross-validation, the data are randomly split
up into K partitions and then (K-1) folds are used for training and
the remaining fold is used for validation. This process is repeated
K times, leaving one different fold for evaluation each time. The
ability of each model to predict is estimated by calculating the
errors on each test instance of each K-fold. The advantage of
the K-fold cross validation is that all the of examples in the data set
are eventually used for both training and validation, yet for each
example in the data set, training and validation are implemented
independently (Oommen et al. 2010).

Recognition Rate

At this stage the recognition rates produced by ANFIS are com-
pared for various SVDD parameters. It should be noted that
except for s5 0:05 values, which give discrete and multiple seg-
ment data boundaries, the other values have been tried to deter-
mine the best recognition rate. ANFIS was run 10 times for
two Gaussian kernels widths s (s5 0:15 and 0:25) and four values
of C (C5 0:05, 0:15, 0:25, and 1), and the mean values of train-
ing and test procedures are evaluated. The outcome is shown in
Table 1.

Based on the previous results, C5 0:25 and s5 0:15 are
chosen.

Mathematical Definition of Threshold

The methodology of defining the liquefaction threshold ( f ) by
ANFIS classifier is described subsequently

f
�
qc,1,CSR

� ¼ P8
i¼1

vizi

�P8
i¼1

vi (1)

where vi and zi are obtained as follows:

Table 1. Comparison of Average of Recognition Rate for Two Gaussian
Kernels Widths s (s5 0:15 and 0:25) and Four C Values (C5 0:05,
0:15, 0:25, and 1)

SVDD parameter Train Test

C5 0:05, s5 0:15 91.65 90.69
C5 0:05, s5 0:25 92.13 90.53
C5 0:15, s5 0:15 92.48 90.61
C5 0:15, s5 0:25 92.17 90.97
C5 0:25, s5 0:15 92.52 91.97
C5 0:25, s5 0:15 92.26 90.52
C5 0:5, s5 0:15 92.21 90.96
C5 0:5, s5 0:25 92.60 91.01
C5 1, s5 0:15 92.79 91.54
C5 1, s5 0:25 92.55 91.05

Table 2. Values of a1i, b1i, a2i, b2i, api , and bpi

I a1i b1i a2i b2i api bpi cpi

1 2.628 6.33 0.0562 0.21 0.0481 26.72 2.187
2 2.628 17.0745 0.0562 0.38 20.0262 20.954 20.167
3 2.628 4.8 0.0562 0.37 0.0066 20.299 1.119
4 2.628 16.597 0.0562 0.1986 0.0209 21.675 21.041
5 2.628 6.45 0.0562 0.13 20.2454 11.55 20.465
6 2.628 2.66 0.0562 0.13 20.2709 16.09 20.902
7 2.628 22.84 0.0562 0.225 0.00049 0.6018 21.141
8 2.628 16.382 0.0562 0.5161 20.2084 2.202 1.692

Fig. 3. Recognition rate for testing and training imbalance and balance data
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vi
�
qc,1,CSR

� ¼ exp

�
2

kqc,12 b1i k
a1i

�
� exp

�
2
kCSR2 b2ik

a2i

�

(2)

zi
�
qc,1,CSR

� ¼ api � qc,1 þ bpi � CSRþ cpi (3)

where a1i, b1i, a2i, b2i, api , b
p
i , and cpi are identified in Table 2

f
�
qc,1,CSR

�
. 0, Liquefaction occurs

f
�
qc,1,CSR

�
, 0, Nonliquefaction occurs

(4)

The average recognition rate obtained by the 10-fold cross-
validation method for each run is shown in Fig. 3. For example,
in the first run, the average recognition rates of train and test data for
imbalance data are 87.42% and 88.7%, respectively; whereas for
upsampled data, the average recognition rates for training and test
data increases to 92.36% and 92.83%, respectively.

Model Validation

To evaluate the performance of the proposed classifier and develop
a quantitative basis for comparison with other methods, a number
of metrics are utilized. The level of accuracy for the constructed
models in each generation is evaluated based on coefficient of
determination (COD) as the fitness function. The COD function
used in this study is

COD ¼ 12

P
N

�
Ya2 Yp

�2
P

N

�
Ya2 ð1=NÞPNYa

�2 (5)

where Ya 5 actual is output value;Yp 5 predicted value, and N 5
number of data points on which the COD is computed. The result
is shown in Table 3.

From the previous results it appears that COD is biased against
ordinary nonliquefied data, and by compensating the minority class
the bias is reduced. It is evident that the proposed technique is as
efficient as the method proposed by Moss et al. (2006) for the liq-
uefied data, but it is much better for determining nonliquefied data
because of the up-sampling procedure introduced here. It must
also be noted that the classifier is applied to both the actual data set
and the compensated data set. Hence, the previous results are directly
comparable.

Summary and Conclusions

Liquefaction in soil is one of the major causes of concern in geo-
technical engineering. The cone penetration test has proven to be an
effective tool in the characterization of subsurface conditions and
the analysis of different aspects of soil behavior, including esti-
mating the potential for liquefaction at a specific site.

The main scope of this study is to implement an adaptive neuro-
fuzzy inference system for the prediction of liquefaction threshold
based on CPT upsampled data. For the identification of liquefac-
tion and nonliquefaction regions, a support vector data description
method with suitable parameters (C and s) was used.

An ANFIS classifier was used to predict soil liquefaction. For
training and testing the data model, K-fold cross-validation was
used. It has been shown that by calculating the COD of the data that
the ANFIS classifier is as efficient as the Bayesian approach pro-
posed by Moss et al. (2006) for the liquefied class, but provided
much better results for the nonliquefied data. In general it is shown
that upsampling has a positive bearing on the recognition rates of
an ANFIS classifier by about 4%.
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Moss et al. (2006) THL 5 5% 1 0.75
THL 5 15% 0.9997 0.7732

ANFIS upsample 0.9966 0.9183
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